1.气相色谱分析的基本原理是什么?

2.气相色谱法原理

3.气相色谱原理

4.简要说明气相色谱分析的基本原理。

5.简述气相色谱仪的分离原理和流程。

气相色谱质谱联用仪原理_气象色谱原理

GC-MS是指气相色谱-质谱联用仪,这是一种测量离子荷质比(电荷-质量比)的分析仪器。在这类仪器中,由于质谱仪工作原理不同,又有气相色谱-四极质谱仪,气相色谱-飞行时间质谱仪,气相色谱-离子阱质谱仪等。

功能应用:

质谱成像能够同时获取样品的化学成分信息和样品表面化学成分空间分布信息,并以图像的形式,直观地反映被测物的物质与空间分布情况。

常用的质谱成像技术MALDI(ma-trix-assisted laser desorption/ionization)、SIMS(secondary ion mass spectrometry)需要在真空环境下进行,在一定程度上限制质谱成像的应用范围。

扩展资料:

原理:

1、气相色谱原理

气相色谱的流动相为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。当多组分的混合样品进入色谱柱后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。

2、质谱原理

质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法,其基本原理 是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束。

进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。

百度百科--GC-MS

气相色谱分析的基本原理是什么?

1 气相色谱

气相色谱是一种以气体为流动相的柱色谱法,根据所用固定相状态的不同可分为气-固色谱(GSC)和气-液色谱(GLC)。

2 气相色谱原理

气相色谱的流动相为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。当多组分的混合样品进入色谱柱后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。吸附力弱的组分容易被解吸下来,最先离开色谱柱进入检测器,而吸附力最强的组分最不容易被解吸下来,因此最后离开色谱柱。如此,各组分得以在色谱柱中彼此分离,顺序进入检测器中被检测、记录下来。

3 气相色谱流程

载气由高压钢瓶中流出,经减压阀降压到所需压力后,通过净化干燥管使载气净化,再经稳压阀和转子流量计后,以稳定的压力、恒定的速度流经气化室与气化的样品混合,将样品气体带入色谱柱中进行分离。分离后的各组分随着载气先后流入检测器,然后载气放空。检测器将物质的浓度或质量的变化转变为一定的电信号,经放大后在记录仪上记录下来,就得到色谱流出曲线。

根据色谱流出曲线上得到的每个峰的保留时间,可以进行定性分析,根据峰面积或峰高的大小,可以进行定量分析。

4 气相色谱仪

由以下五大系统组成:气路系统、进样系统、分离系统、温控系统、检测记录系统。

组分能否分开,关键在于色谱柱;分离后组分能否鉴定出来则在于检测器,所以分离系统和检测系统是仪器的核心。

5 气相色谱仪几种常用检测器

目前有很多种检测器,其中常用的检测器是:氢火焰离子化检测器(FID) 热导检测器(TCD) 氮磷检测器 (NPD)火焰光度检测器(FPD) 电子捕获检测器(ECD)等类型。

氢火焰离子化检测器(FID):(氢)火焰离子化检测器是根据气体的导电率是与该气体中所含带电离子的浓度呈正比这一事实而设计的。一般情况下,组分蒸汽不导电,但在能源作用下,组分蒸汽可被电离生成带电离子而导电。

工作原理:由色谱柱流出的载气(样品)流经温度高达2100℃的氢火焰时,待测有机物组分在火焰中发生离子化作用,使两个电极之间出现一定量的正、负离子,在电场的作用下,正、负离子各被相应电极所收集。当载气中不含待测物时,火焰中离子很少,即基流很小,约10-14A。当待测有机物通过检测器时,火焰中电离的离子增多,电流增大(但很微弱10-8~10-12A)。需经高电阻(108~l011)后得到较大的电压信号,再由放大器放大,才能在记录仪上显示出足够大的色谱峰。该电流的大小,在一定范围内与单位时间内进入检测器的待测组分的质量成正比,所以火焰离子化检测器是质量型检测器。

火焰离子化检测器对电离势低于H2的有机物产生响应,而对无机物、久性气体和水基本上无响应,所以火焰离子化检测器只能分析有机物(含碳化合物),不适于分析惰性气体、空气、水、CO、CO2、CS2、NO、SO2及H2S等。

热导检测器(TCD):热导检测器(TCD)又称热导池或热丝检热器,是气相色谱法最常用的一种检测器。基于不同组分与载气有不同的热导率的原理而工作的热传导检测器。

工作原理:热导检测器的工作原理是基于不同气体具有不同的热导率。热丝具有电阻随温度变化的特性。当有一恒定直流电通过热导池时,热丝被加热。由于载气的热传导作用使热丝的一部分热量被载气带走,一部分传给池体。当热丝产生的热量与散失热量达到平衡时,热丝温度就稳定在一定数值。此时,热丝阻值也稳定在一定数值。由于参比池和测量池通入的都是纯载气,同一种载气有相同的热导率,因此两臂的电阻值相同,电桥平衡,无信号输出,记录系统记录的是一条直线。当有试样进入检测器时,纯载气流经参比池,载气携带着组分气流经测量池,由于载气和待测量组分二元混合气体的热导率和纯载气的热导率不同,测量池中散热情况因而发生变化,使参比池和测量池孔中热丝电阻值之间产生了差异,电桥失去平衡,检测器有电压信号输出,记录仪画出相应组分的色谱峰。载气中待测组分的浓度越大,测量池中气体热导率改变就越显著,温度和电阻值改变也越显著,电压信号就越强。此时输出的电压信号与样品的浓度成正比,这正是热导检测器的定量基础。

热导池(TCD)检测器是一种通用的非破坏性浓度型检测器,一直是实际工作中应用最多的气相色谱检测器之一。TCD特别适用于气体混合物的分析,对于那些氢火焰离子化检测器不能直接检测的无机气体的分析,TCD更是显示出独到之处。TCD在检测过程中不破坏被监测组份,有利于样品的收集,或与其他仪器联用。TCD能满足工业分析中峰高定量的要求,很适于工厂的控制分析。

氮磷检测器 (NPD):氮磷检测器(NPD)是一种质量检测器,适用于分析氮,磷化合物的高灵敏度、高选择性检测器。它具有与FID相似的结构,只是将一种涂有碱金属盐如Na2SiO3,Rb2SiO3类化合物的陶瓷珠,放置在燃烧的氢火焰和收集极之间,当试样蒸气和氢气流通过碱金属盐表面时,含氮、磷的化合物便会从被还原的碱金属蒸气上获得电子,失去电子的碱金属形成盐再沉积到陶瓷珠的表面上。

工作原理:是在NPD检测器的喷口上方, 有一个被大电流加热的铷珠, 碱金属盐( 铷珠) 受热而逸出少量离子, 铷珠上加有-250V 极化电压, 与圆筒形收集极形成直流电场,逸出的少量离子在直流电场作用下定向移动,形成微小电流被收集极收集,即为基流。当含氮或磷的有机化合物从色谱柱流出, 在铷珠的周围产生热离子化反应, 使碱金属盐( 铷珠) 的电离度大大提高, 产生的离子在直流电场作用下定向移动, 形成的微小电流被收  集极收集, 再经微电流放大器将信号放大, 再由积分仪处理, 实现定性定量的分析。

氮磷检测器的使用寿命长、灵敏度极高,可以检测到5×10-13g/s偶氮苯类含氮化合物,2.5×10-13g/s的含磷化合物,如马拉松农药。它对氮、磷化合物有较高的响应。而对其他化合物有的响应值低10000~100000倍。氮磷检测器被广泛应用于农药、石油、食品、药物、香料及临床医学等多个领域。

火焰光度检测器(FPD):火焰光度检测器是利用在一定外界条件下(即在富氢条件下燃烧)促使一些物质产生化学发光,通过波长选择、光信号接收,经放大把物质及其含量和特征的信号联系起来的一个装置。主要由燃烧室、单色器、光电倍增管、石英片(保护滤光片)及电源和放大器等组成。

工作原理:当含S、P化合物进入氢焰离子室时,在富氢焰中燃烧,有机含硫化合物首先氧化成SO2,被氢还原成S原子后生成激发态的S2*分子,当其回到基态时,发射出350~430nm的特征分子光谱,最大吸收波长为394nm。通过相应的滤光片,由光电倍增管接收,经放大后由记录仪记录其色谱峰。此检测器对含S化合物不成线性关系而呈对数关系(与含S化合物浓度的平方根成正比)。

当含磷化合物氧化成磷的氧化物,被富氢焰中的H还原成HPO裂片,此裂片被激发后发射出480~600nm的特征分子光谱,最大吸收波长为526nm。因发射光的强度(响应信号)正比于HPO浓度。

电子捕获检测器(ECD):早期电子捕获检测器由两个平行电极制成。现多用放射性同轴电极。在检测器池体内,装有一个不锈钢棒作为正极,一个圆筒状-放射源(3H、63Ni)作负极,两极间施加流电或脉冲电压。

工作原理:当纯载气(通常用高纯N2)进入检测室时,受射线照射,电离产生正离子(N2+)和电子e-,生成的正离子和电子在电场作用下分别向两极运动,形成约10-8A的电流——基流。加入样品后,若样品中含有某中电负性强的元素即易于电子结合的分子时,就会捕获这些低能电子,产生带负电荷阴离子(电子捕获)这些阴离子和载气电离生成的正离子结合生成中性化合物,被载气带出检测室外,从而使基流降低,产生负信号,形成倒峰。倒峰大小(高低)与组分浓度呈正比,因此,电子捕获检测器是浓度型的检测器。其最小检测浓度可达10-14g/ml,线性范围为103左右。

电子捕获检测器是一种高选择性检测器。高选择性是指只对含有电负性强的元素的物质,如含有卤素、S、P、N等的化合物等有响应.物质电负性越强,检测灵敏度越高。

气相色谱法原理

气相色谱分析的基本原理是:

利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。

气相色谱分离过程中,溶质分子与固定相之间的相互作用,决定了溶质在固定相和载气之问的相平衡关系,与溶质的保留值直接相关,这是影响色谱分离的热力学因素。

气相色谱具有以下特点:

①分析速度快。一般只需几分钟到几十分钟便可完成一次分析,如果用色谱工作站控制整个分析过程,自动化程度提高,分析速度更快。

②选择性好。能分离分析性质极为相近的物质,如有机物中的手性物质,顺、反异构体,同位素,芳香烃中的邻、间、对位异构体、对映体积组成极复杂的混合物,如石油、污染水样和天然精油等。

③分离效能高。在较短时间内能够同时分离和测定极为复杂的混合物。例如,用空心毛细管柱能一次分析样品中的150个组分。

气相色谱原理

气相色谱法的基本原理是利用混合物中各组分在流动相和固定相中具有不同的溶解及解析能力(指气—液色谱),或不同的吸附和脱附能力(指气—固色谱)。当两相做相对运动时,样品各组分在两相中受上述各种作用力的反复作用,从而使混合物中的组分得到分离。当组分A离开色谱柱出口进入检测器时,记录仪就记录出组分A的色谱峰,当组分B离开色谱柱出口进入检测器时,记录仪就记录出组分B的色谱峰。

简要说明气相色谱分析的基本原理。

气相色谱仪工作原理

气相色谱仪分析基本流程:样品由载气吹动 ——> 样品经色谱柱分离——> 检测器检测成分——>工作站打印分析结果

一色谱法也叫层析法,它是一种高效能的物理分离技术,将它用于分析化学并配合适当的检测手段,就成为色谱分析法。 色谱法的最早应用是用于分离植物色素,其方法是这样的:在一玻璃管中放入碳酸钙,将含有植物色素(植物叶的提取液)的石油醚倒入管中。此时,玻璃管的上端立即出现几种颜色的混合谱带。然后用纯石油醚冲洗,随着石油醚的加入,谱带不断地向下移动,并逐渐分开成几个不同颜色的谱带,继续冲洗就可分别接得各种颜色的色素,并可分别进行鉴定。色谱法也由此而得名。

1、色谱分离基本原理:

在色谱法中存在两相,一相是固定不动的,我们把它叫做固定相;另一相则不断流过固定相,我们把它叫做流动相。

色谱法的分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。

使用外力使含有样品的流动相(气体、液体)通过一固定于柱中或平板上、与流动相互不相溶的固定相表面。当流动相中携带的混合物流经固定相时,混合物中的各组分与固定相发生相互作用。

由于混合物中各组分在性质和结构上的差异,与固定相之间产生的作用力的大小、强弱不同,随着流动相的移动,混合物在两相间经过反复多次的分配平衡,使得各组分被固定相保留的时间不同,从而按一定次序由固定相中先后流出。与适当的柱后检测方法结合,实现混合物中各组分的分离与检测。

2.、色谱分类方法:

色谱分析法有很多种类,从不同的角度出发可以有不同的分类方法。

从两相的状态分类:

色谱法中,流动相可以是气体,也可以是液体,由此可分为气相色谱法(GC)和液相色谱法(LC)。固定相既可以是固体,也可以是涂在固体上的液体,由此又可将气相色谱法和液相色谱法分为气-液色谱、气-固色谱、液-固色谱、液-液色谱。

色谱仪应用:检测站、质检部门、环境保护部门、医院、酒厂、化工厂、石化企业、炼油厂、液化器厂、食品厂、高等院校生物化学专业等

朋友可以到行业内专业的网站进行交流学习!

分析测试百科网这块做得不错,气相、液相、质谱、光谱、药物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。

简述气相色谱仪的分离原理和流程。

GC(气相色谱)主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。

待分析样品在汽化室汽化后被惰性气体(即载气,也叫流动相)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。

但由于载气是流动的,这种平衡实际上很难建立起来。也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解吸附,结果是在载气中浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。

当组分流出色谱柱后,立即进入检测器。检测器能够将样品组分转变为电信号,而电信号的大小与被测组分的量或浓度成正比。当将这些信号放大并记录下来时,就是气相色谱图了。

气相色谱分析应用

气相色谱分析是重要的仪器分析手段之一,它具有分离效能高、分析速度快、灵敏度高、对复杂的多组分混合物定性与定量分析结果准确,容易自动化、高选择性等特点。

日益广泛地应用于石油、精细化工、医药、生化、电力、白酒、矿山、环境科学等各个领域,成为工农业生产、科研、教学等部门不可缺少的重要分离、分析工具。具体如下:

在石油化学工业中,用气相色谱法来分析原料和产品,进行质量控制;

在电力部门中,用来检查变压器等的潜伏性故障;在环境保护工作中,用来监测空气和水的质量;

在农业上,用来监测农作物中残留的农药;

在商业部门,检验及鉴定食品质量的好坏;

在医学上可用来研究人体新陈代谢、生理机能,在临床上用于鉴别药物中毒或疾病类型;

在宇宙舱中可用来自动监测飞船密封仓内的气体;

在有机合成领域内的成份研究和生产控制;

尖端科学上军事检测控制和研究等等。

以上内容参考 百度百科-气相色谱分析;百度百科-气相色谱

答案:当流动相中样品混合物经过固定相时,就会与固定相发生作用,由于各组分在性质和结构上的差异,与固定相相互作用的类别,强弱也有差异,因此,在同一推动力作用下,不同组分在固定相滞留时间长短不同,从而按先后不同的次序从固定相中流出。

流程:气路系统----进样系统----分离系统----温控系统----检验和数据处理系统。